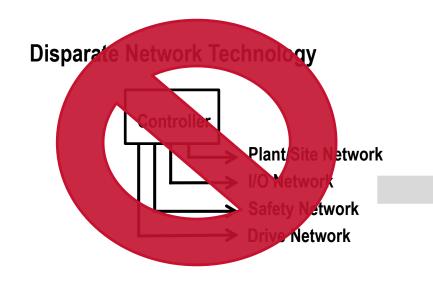
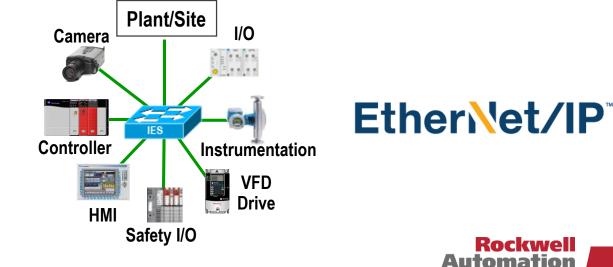

DataTour 2019 Petr **DRAHOTA**


Konzultant pro návrh strojů


Industrial Application Convergence

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

Single Industrial Network Technology

EtherNet/IP Advantage

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

- Single industrial network technology for:
 - <u>Multi-discipline Network Convergence</u> Discrete, Continuous Process, Batch, Motor, Safety, Motion, Power, Time Synchronization, Supervisory Information, Asset Configuration/Diagnostics
- Established
 - <u>Risk reduction</u> broad availability of products, applications and vendor support
 - ODVA: Cisco Systems[®], Endress+Hauser, Rockwell Automation[®] are principal members
 - Supported Conformance testing, defined QoS priority values for EtherNet/IP devices
- Standard IEEE 802.3 Ethernet and IETF TCP/IP Protocol Suite
 - Enables convergence of OT and IT common toolsets (assets for design, deployment and troubleshooting) and skills/training (human assets)
 - Topology and media independence <u>flexibility and choice</u>
 - Device-level and switch-level topologies; copper fiber wireless
- Portability and routability <u>seamless plant-wide / site-wide information sharing</u>

No data mapping – simplifies design, speeds deployment and reduces risk

Single Industrial Network Technology

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

	ISO		Open Systems Interconnection	Industrial Internet of Things (IIoT)
Layer No.		Layer Name	Function	Examples
Layer 7		Application	Network Services to User App	CIP - IEC 61158
Layer 6		Presentation	Encryption/Other processing	
Layer 5		Session	Manage Multiple Applications	
Layer 4		Transport	Reliable End-to-End Delivery Error Correction	IETF TCP/UDP
Layer 3	Routers	Network	Logical Addressing, Packet Delivery, Routing	IETF IP
Layer 2	Switches	Data Link	Framing of Data, Error Checking	IEEE 802.3/802.1/802.11
Layer 1	Cabling/RF	Physical	Signal type to transmit bits, pin-outs, cable type	IEEE : TIA-1005

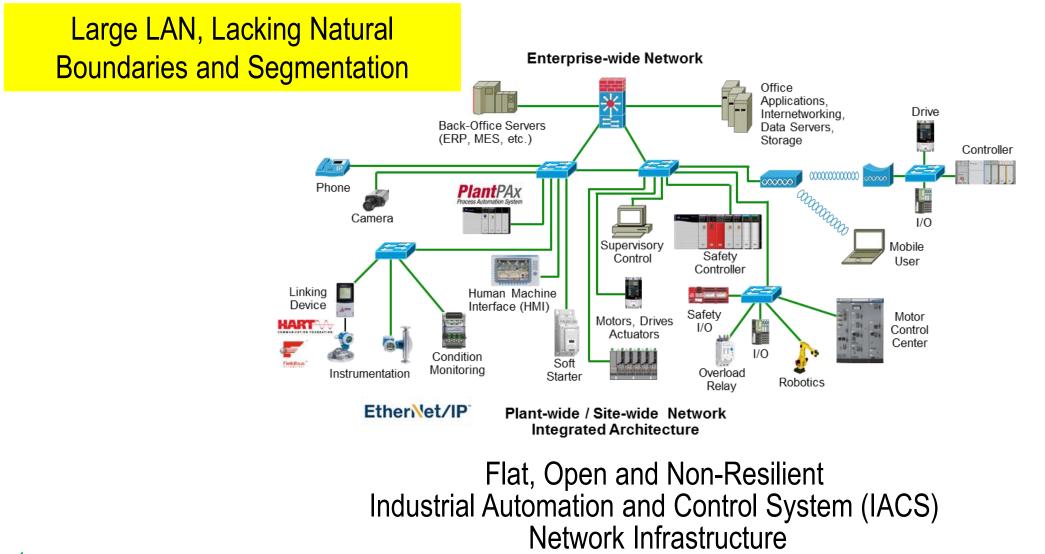
5-Layer TCP/IP Model

EtherNet/IP Device Selection

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

ODVA

- Conformance tested, with declaration of conformity
- PlugFest interoperability testing in a full multi-vendor system configuration


Selection of Controllers

- # EtherNet/IP ports, types, topology
- Environment: on-machine / in-panel
- Communication speed
- Maximum # of nodes
- Minimum requested packet interval (RPI)
- Maximum I/O data size per RPI

- Selection of Sensor / Actuators
 - Application Requirements
 - Environment: on-machine / in-panel
 - # EtherNet/IP ports, types, topology
 - Communication speed
 - Minimum RPI (how fast)
 - Maximum I/O Data Size per RPI
- Selection Tools
 - Integrated Architecture Builder (IAB)
 - EtherNet/IP Capacity Tool
 - System Configuration Drawings (PCDs)

Industrial IoT (IIoT) – IACS Convergence

Challenges Associated with Technology Convergence

IACS Application Requirements

Challenges Associated with Technology Convergence

What is secure?

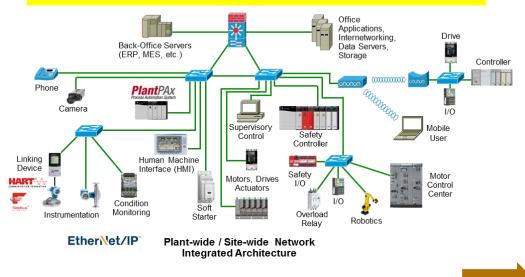
What is real-time?

What is resilient?

	Process Automation	Discrete Automation	Loss Critical
Function	Slower Process Automation	Discrete Automation	Multi-axis Motion Control
Communication Technology	.Net, DCOM, TCP/IP	Industrial Protocols - CIP	Hardware and Software solutions, e.g. CIP Motion, PTP
Period	10 ms to 1 second or longer	1 ms to 100 ms	100 µs to 10 ms
Industries	Oil & Gas, chemicals, energy, water	Auto, food and beverage, semiconductor, metals, pharmaceutical	Subset of Discrete automation
Applications	Pumps, compressors, mixers; monitoring of temperature, pressure, flow	Material handling, filling, labeling, palletizing, packaging; welding, stamping, cutting, metal forming, soldering, sorting	Synchronization of multiple axes: printing presses, wire drawing, web making, picking and placing

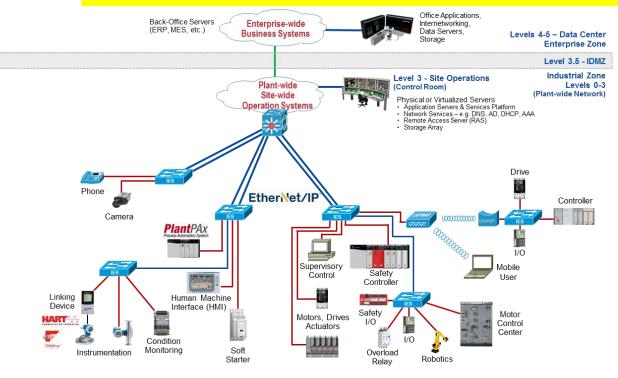
- Only you can define what this means for your application.
- Application dependent.
- One size does not fit all!

Source: ARC Advisory Group


Rockwei

tomatio

Industrial IoT (IIoT) – IACS Convergence


Challenges Associated with Technology Convergence

Large LAN, Lacking Natural Boundaries and Segmentation

Flat, Open and Non-Resilient IACS Network Infrastructure

Smaller Connected LANs to Create Boundaries and Segmentation

Plant-wide / Site-wide Network Integrated Architecture – Intelligent Motor Control

Structured and Hardened

IACS Network Infrastructure

Rockwel

Automati

Cisco and Rockwell Automation®

Structured and Hardened Network Infrastructure

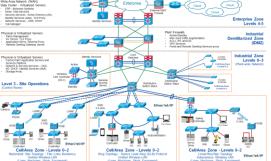
Plant of the Future - Common Technology View:

A single scalable architecture, using open and standard Ethernet, IP and Wi-Fi networking technologies, enabling the Industrial Internet of Things (IIoT) to help achieve the flexibility, visibility and efficiency required in a competitive manufacturing environment.

Converged Plantwide Ethernet (CPwE) Architectures:

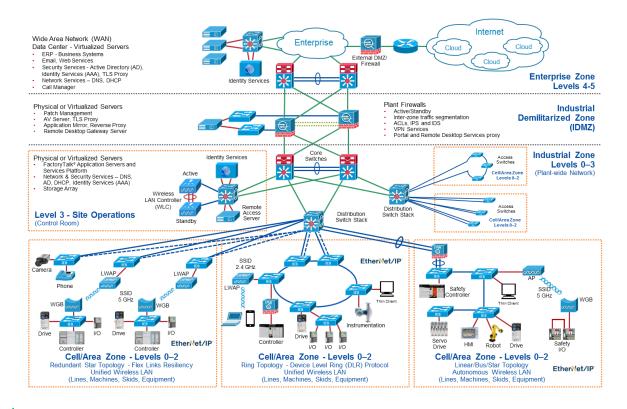
Collection of tested and validated architectures developed by subject matter authorities at Cisco and Rockwell Automation. The content of CPwE is relevant to both operational technology (OT) and information technology (IT) disciplines. CPwE consists of documented architectures, best practices, design guidance and configuration settings to help manufacturers with development and deployment of a scalable, reliable, safe, secure and future-ready plant-wide industrial network infrastructure.

Joint Product Collaboration:


Combining the best of Rockwell Automation and Cisco - Stratix® 2500/Stratix 5000/Stratix 8000 families of managed industrial Ethernet switches, Stratix 5950 Security Appliance, and Stratix 5900 Services Router.

Workforce Development - People and Process Optimization:

Education, training, certifications and services to help facilitate OT and IT technology, network and cultural convergence.

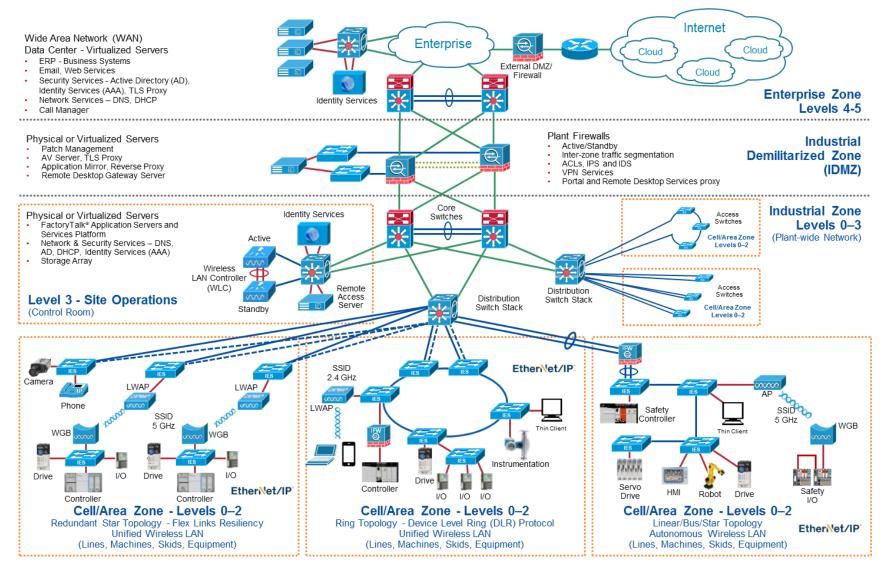


Reference Architectures

Structured and Hardened Network Infrastructure

What are reference architectures?

 Baseline architectures, considerations and best practices for design and implementation.


Reference Architectures:

- Marketectures high-level marketing illustrations
- White papers and knowledgebase articles based on proof of concept (PoC) testing
- <u>Accelerator Toolkits</u>:
 - Examples Drives and Motion, Water Wastewater, Safety, Energy Management
- <u>System Configuration Drawings</u>
 - Examples Stratix[®], MCC, Wi-Fi, ControlLogix[®]
- <u>Converged Plantwide Ethernet (CPwE) Architectures</u>:
 - Cisco / Rockwell Automation Strategic Alliance
 - Tested and Validated Architectures
 - Test labs Cisco, Rockwell Automation and Panduit
 - White papers, design guides, application guides

Rockwei

Reference Architectures

Structured and Hardened Network Infrastructure

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Single Industrial Network Technology

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

	ISO		Open Systems Interconnection	Industrial Internet of Things (IIoT)
Layer No.		Layer Name	Function	Examples
Layer 7		Application	Network Services to User App	CIP - IEC 61158
Layer 6		Presentation	Encryption/Other processing	
Layer 5		Session	Manage Multiple Applications	
Layer 4		Transport	Reliable End-to-End Delivery Error Correction	IETF TCP/UDP
Layer 3	Routers	Network	Logical Addressing, Packet Delivery, Routing	IETF IP
Layer 2	Switches	Data Link	Framing of Data, Error Checking	IEEE 802.3/802.1/802.11
Layer 1	Cabling/RF	Physical	Signal type to transmit bits, pin-outs, cable type	IEEE : TIA-1005

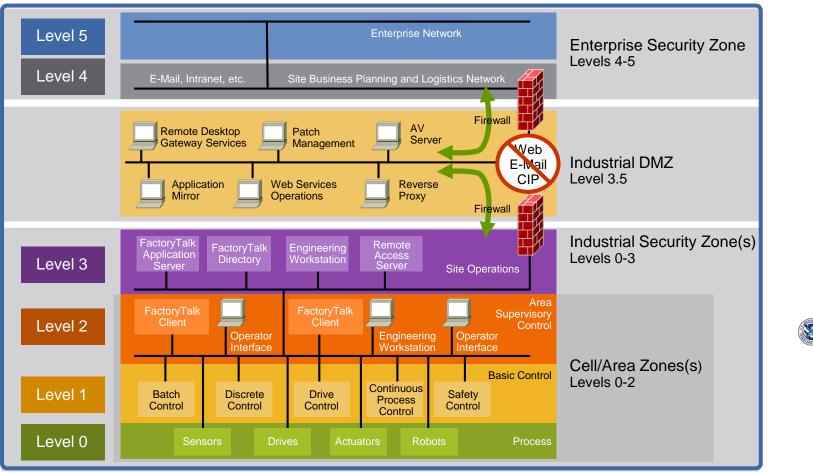
5-Layer TCP/IP Model

CPwE Logical Model - Built on Technology and Industry Standards Logical Zoning (Segmentation)

OT Standards

Operational Levels

- ISA 95, Purdue Levels 0-5
 - Level 0 Sensor/Actuators
 - Level 1 Controller
 - Level 2 Local Supervisor
 - Level 3 Site Operations
 - Levels 4-5 Enterprise
- Functional / Security Zones
 - IEC-62443, NIST 800-82, DHS/INL/ICS-CERT
 - Enterprise, Industrial, IDMZ
 - Industrial Subzones Cell/Area, Site Operations


IT Standards

- Network Technology
 - OSI Reference Model 7 Layers
 - IEEE 802.1, 802.3, 802.11
 - IETF TCP, UDP, IP
- Network Switch Hierarchy
 - Campus Network Model
 - Layer 2 Access
 - Layer 3 Distribution/Aggregation
 - Layer 3 Core

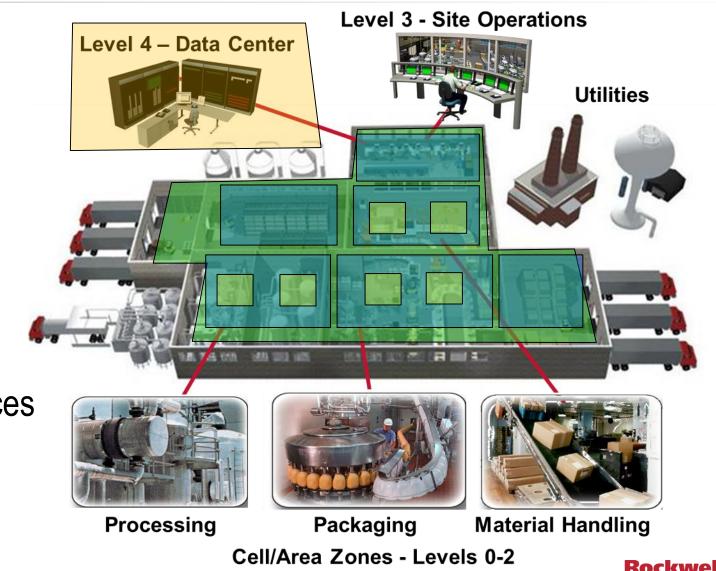
CPwE Logical Model - Operational Levels - Functional / Security

Zones Logical Zoning (Segmentation)

Automation

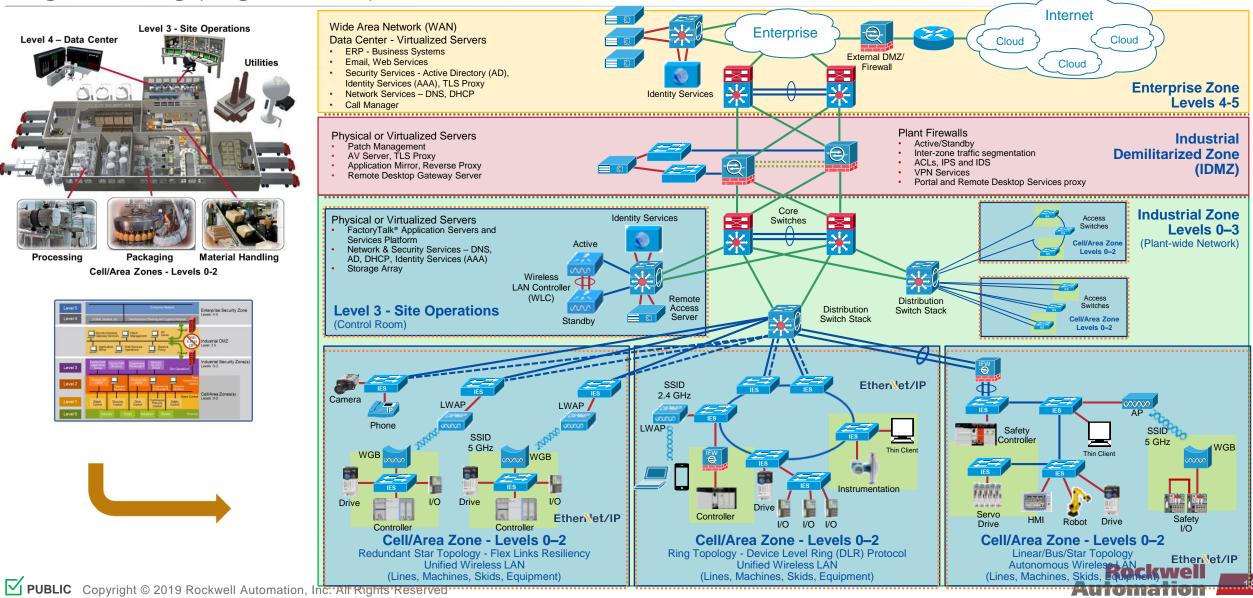
- Levels ISA 95, Purdue Reference Model
- Zones IEC 62443, NIST 800-82, DHS/INL/ICS-CERT Recommended Practices

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

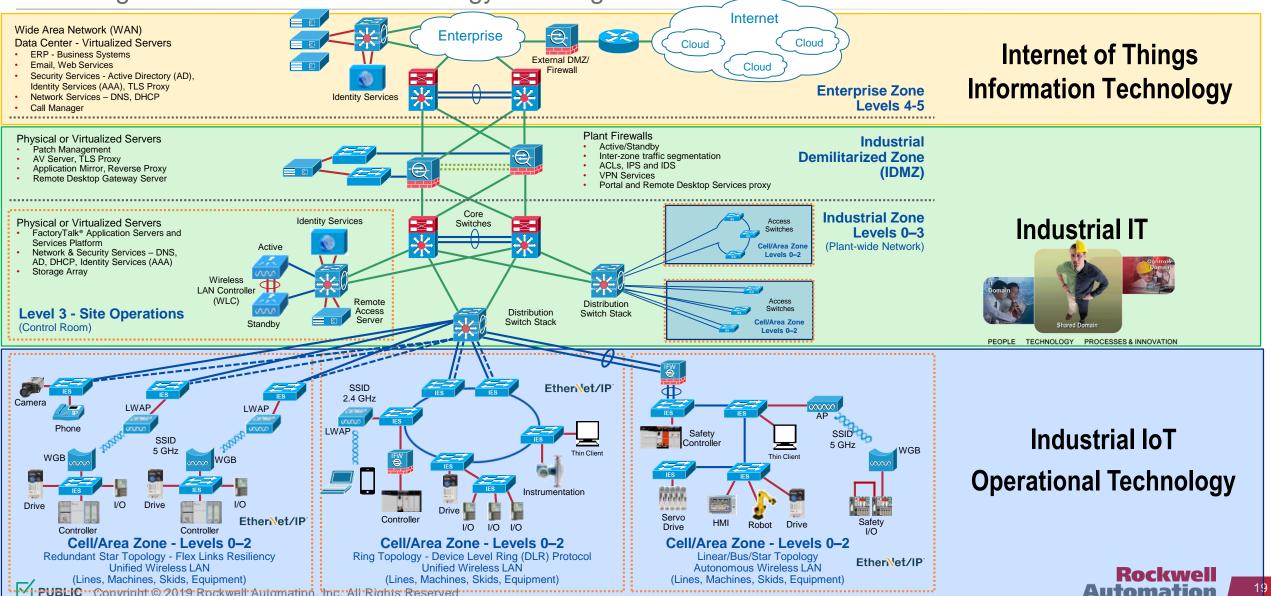

16

Plant-wide Functional / Security Zoning

Logical Zoning (Segmentation)


Plant-wide Zoning

- Functional / Security Areas
- Smaller Connected LANs
 - Smaller Broadcast Domains
 - Smaller Fault Domains
 - Smaller Domains of Trust
- IEC 62443-3-2 Security Zones and Secure Conduits Model
- DHS/INL/ICS-CERT Best Practices
- Industrial IoT Technology
- Building Block Approach for Scalability


Plant-wide Functional / Security Zoning

Logical Zoning (Segmentation)

OT-IT Collaboration / Convergence

Challenges Associated with Technology Convergence

Structured and Hardened Network Infrastructure

Zoning (Segmentation)

Smaller Connected LANs to help:

- Minimize network sprawl
- Modular building block approach for scalable, reliable, safe, secure and future-ready network infrastructure
- Segment Industrial IoT Technologies
- Smaller Layer 2 broadcast domains
 - Restrict Layer 2 broadcast traffic
 - Smaller fault domains (e.g. Layer 2 loops)
 - Smaller domains of trust (security)

- Multiple techniques to create smaller network building blocks (Layer 2 domains)
 - Logical zoning geographical and functional organization of IACS devices
 - Multiple network interface cards (NICs) e.g. CIP bridge
 - Campus network model multi-tier switch hierarchy Layer 2 and Layer 3
 - Virtual Local Area Networks (VLANs) with Access Control Lists (ACLs), Firewalls
 - Network Address Translation (NAT)
 - Software-Defined Segmentation via Security Group Tagging (SGT)

OT-IT Collaboration / Convergence

Challenges Associated with Technology Convergence

Technology Differences

- Software and hardware toolsets
- Varying implementations of Layer 2/3 network services may create incompatibilities
 - Availability, Performance, Traffic Types, Security

Cultural Differences

- Availability SLA (service level agreement)
 - Minutes/Hours vs. Hours/Days
- Policies
 - Security CIA vs. AIC
 - QoS prioritization of voice and video
 - NAT, Multicast

- Skill-gaps Workforce Development
 - OT personnel with knowledge of IT skills and requirements
 - IT personnel with knowledge of OT skills and requirements
 - Lack of Industrial IT personnel
- Functional Differences and Incompatibilities between IT:
 - Technologies e.g. resiliency
 - Products e.g. QoS policies
 - Applications e.g. WebEx and Skype
 - Solutions e.g. network access control

Differences

Challenges Associated with Technology Convergence

Criteria	Industrial OT Network	Enterprise IT Network		
Environment	 Plant-floor Control Room Control Panel, Industrial Distribution Frame (IDF) 	 Carpeted Space, Data Center Data Communication or Wiring Closet, Intermediate Distribution Frame (IDF) 		
Switches	 Managed and unmanaged Layer 2 is predominant DIN rail or panel mount is predominant 	ManagedLayer 2 and Layer 3Rack mount		
Wireless	 Autonomous (locally managed) – point solutions Mobile equipment (emerging) and personnel (prevalent) 	 Unified (centrally managed) solutions Mobile personnel – corporate provided or BYOD Guest access 		
Computing	 Industrial Hardened Panel Mount Computers and Monitors Desktop, Notebook 19" Rack Server Virtualization - becoming prevalent Hardening – sporadic patching and white listing 	 Desktop, Notebook Tablets 19" Rack Server and Blade Server Unified Computing Systems (UCS) Virtualization – widespread Hardening - patching and white listing 		
PUBLIC Copyright	PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved			

Differences Challenges Associated with Technology Convergence

Criteria	Industrial OT Network	Enterprise IT Network
Network Technology	 Standard IEEE 802.3 Ethernet and proprietary (non-standard) versions Standard IETF Internet Protocol (IPv4) and proprietary (non-standard) alternatives Sporadic use of standard Layer 2 and Layer 3 network and security services 	 Standard IEEE 802.3 Ethernet Standard IETF Internet Protocol (IPv4 and IPv6) Pervasive use of standard Layer 2 and Layer 3 network and security services
Network Availability	 Switch-Level and Device-Level topologies Ring topology is predominant for both, Redundant Star for switch topologies is emerging Standard IEEE, IEC and vendor specific Layer 2 resiliency protocols 	 Switch-Level topologies Redundant Star topology is predominant Standard IEEE, IETF, and vendor specific Layer 2 and Layer 3 resiliency protocols
Service Level Agreement (SLA)	 Mean time to recovery (MTTR) - Minutes, Hours 	 Mean time to recovery (MTTR) - Hours, Days
IP Addressing	Mostly Static	Mostly Dynamic

Differences

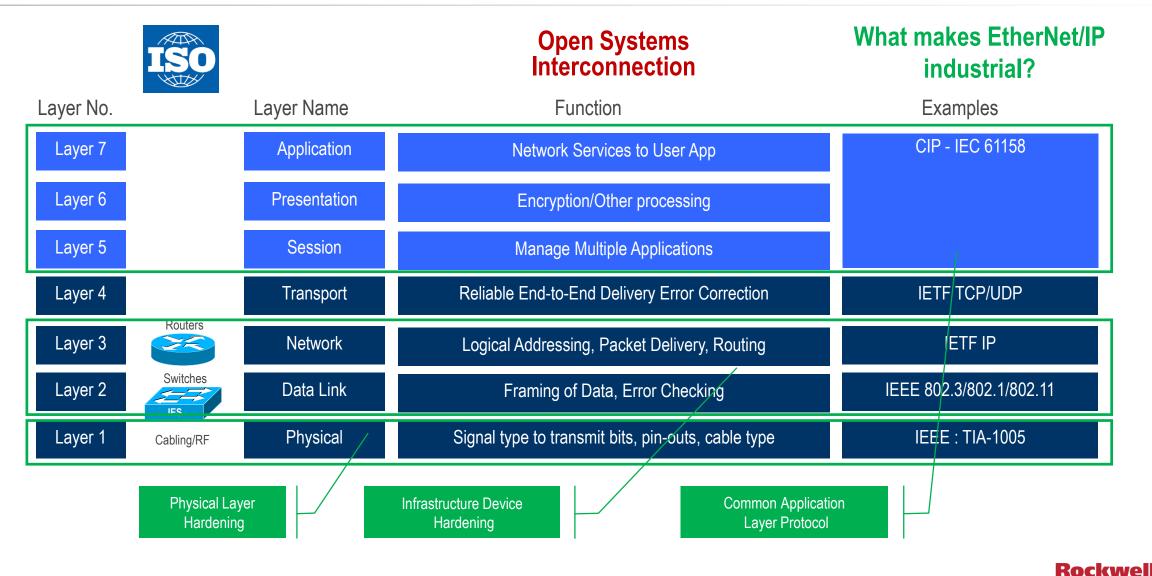
Challenges Associated with Technology Convergence

Rockwell

24

Criteria	Industrial OT Network	Enterprise IT Network
Traffic Type	 Primarily local – traffic between local assets Information, control, safety, motion, time synchronization, energy management Smaller Ethernet frames for control traffic Industrial application layer protocols: CIP, Profinet, IEC 61850, Modbus TCP, etc. 	 Primarily non-local – traffic to remote assets Voice, Video, Data Larger IP packets and Ethernet frames Standard application layer protocols: HTTP, SNMP, DNS, RTP, SSH, etc.
Performance	 Low Latency, Low Jitter (1 ms, 100s ns) Data Prioritization – QoS – Layer 2 and 3 	 Low Latency, Low Jitter (100s ms, 10s ms) Data Prioritization – QoS – Layer 3
Security	 Open by default, must secure by design, architecture and configuration Industrial security standards – e.g. IEC, NIST Inconsistent deployment of security policies No line-of-sight to the Enterprise or to the Internet 	 Pervasive Enterprise security best practices Strong security policies Line-of-sight across the Enterprise and to the Internet

Differences


Challenges Associated with Technology Convergence

Criteria	Industrial OT Network	Enterprise IT Network
Focus	24/7 operations, high OEE	Protecting intellectual property and company assets
Precedence of Priorities	Availability Integrity Confidentiality	Confidentiality Integrity Availability
Types of Data Traffic	Converged network of data, control, information, safety and motion	Converged network of data, voice and video
Access Control	Strict physical access Simple network device access	Strict network authentication and access policies
Implications of a Device Failure	Production is down (\$\$'s/hour or worse)	Work-around or wait
Threat Protection	Isolate threat but keep operating	Shut down access to detected threat
Upgrades	Scheduled during downtime	Automatically pushed during uptime

Single Industrial Network Technology

EtherNet/IP^{*}

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

26

Automation

Security-enabling The Connected Enterprise

Enterprise Risk Management

- 1. Faster time to market Security and safety for On-Machine[™], centralized, and distributed applications. All applications are developed using a common integrated design environment.
- 2. Lower total cost of ownership "Security built-in" & enterprise integration. Integrating security capabilities into the products provides customer value through architecture consolidation and simplification.
- **3.** Improved asset utilization Security incidents can impact the availability of machines and systems for weeks, even months. Security systems should enable strong prevention, accurate detection, and quick mitigation of events.
- 4. Enterprise risk management Intellectual property, compliance, brand/product integrity, and the protection of people, processes, and machines are all at risk without a holistic, defense-in-depth approach to security.

Secure automation & information

Defending the digital architecture

Secure Network Infrastructure

Control access to the network, and **Detect** unwanted access and activity

Access Control & Policy Management Control Who, What, Where & When access is allowed, to which application & device

Content Protection

Protect viewing, editing, and use of specific pieces of control system content

Tamper Detection

Detect & Record unwanted Activity & Modifications to the application

INDUSTRIAL SECURITY MUST BE IMPLEMENTED AS A SYSTEM

Holistic approach

A secure application depends on multiple layers of protection and industrial security must be implemented as a system.

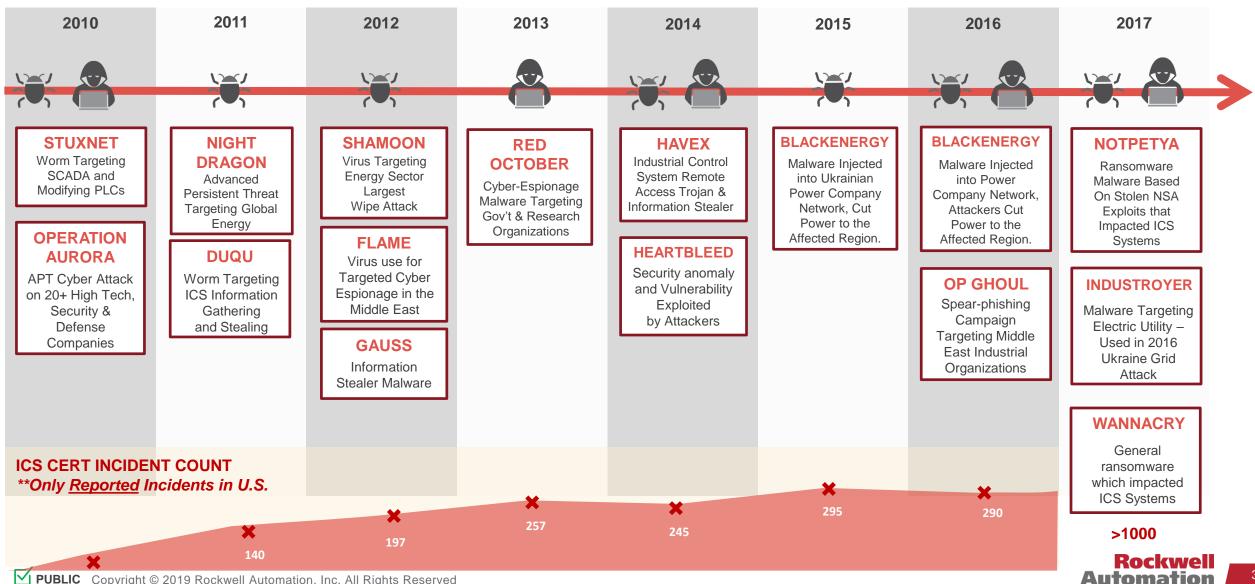
Defense in depth

Shield targets behind multiple levels of security countermeasures to reduce risk

Openness

Consideration for participation of a variety of vendors in our security solutions

Flexibility


Able to accommodate a customer's needs, including policies & procedures

Consistency

Solutions that align with Government directives and Standards Bodies

ICS-Focused Campaigns

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Threat examples

Google HQ, Wharf - 2013

SHODAN discovered over 21,000 missconfigured building automation systems.

MISS-CONFIGURE Maroochy Water System - 2010

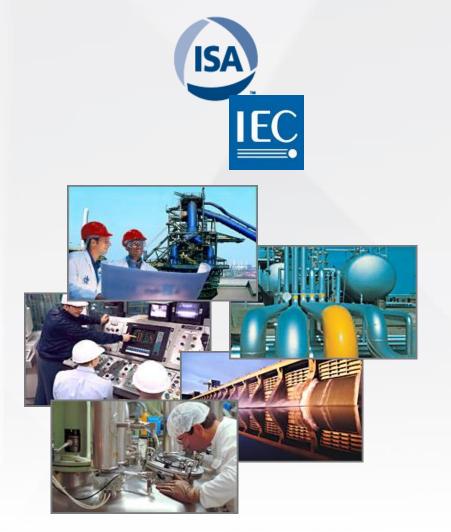
INSIDER ATTACK

Disgruntled ex-employee hacks into the water system and floods the community of sewage.

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

2017 ICS-CERT Top 6 Weaknesses

FY 2017 Most Prevalent Weaknesses		
Area of Weakness	Rank	Risk
Doundon, Drotostion	1	Undetected unauthorized activity in critical systems
Boundary Protection		Weaker boundaries between ICS and enterprise networks
Identification and Authentication	2	Lack of accountability and traceability for user actions if an account is compromised
(Organizational Users)		 Increased difficulty in securing accounts as personnel leave the organization, especially sensitive for users with administrator access
Allocation of Resources	3	No backup or alternate personnel to fill position if primary is unable to work
Allocation of Resources		Loss of critical knowledge of control systems
		 Unauthorized physical access to field equipment and locations provides increased opportunity to:
Divisional Association Operational		 Maliciously modify, delete, or copy device programs and firmware
Physical Access Control	4	 Access the ICS network
		 Steal or vandalize cyber assets
		 Add rogue devices to capture and retransmit network traffic
Account Management	5	Compromised unsecured password communications
Account Management		 Password compromise could allow trusted unauthorized access to systems
Loost Eurotionality	6	 Increased vectors for malicious party access to critical systems
Least Functionality		Rogue internal access established


ISA/IEC 62443

Certified products, systems and system delivery

Series of standards that define procedures for implementing electronically secure Industrial Automation and Control Systems (IACS).

Applies to those responsible for *designing, manufacturing, implementing, or managing* industrial control systems:

- End-users (i.e. asset owner)
- System integrators
- Security practitioners
- ICS product/systems vendors



Security built-in

Vendors must build security into products with a focus on security throughout the products lifecycle...

- Product Security Office
- Secure Development Lifecycle

Secure network infrastructure

New validated architectures

Achieve infrastructure security through a common, validated system architecture leveraging the Stratix[®] portfolio and Cisco security solutions.

Design and Implementation Guides:

- Converged Plantwide Ethernet (CPwE) Design and Implementation Guide
- Segmentation Methods within the Cell/Area Zone
- Securely Traversing IACS Data Across the Industrial Demilitarized Zone
- Deploying Identity Services within a Converged Plantwide Ethernet Architecture
- Site-to-site VPN to a Converged Plantwide Ethernet Architecture
- Deploying industrial firewalls within a Converged Plantwide Ethernet Architecture
- Download these and more at:
- <u>http://www.rockwellautomation.com/global/products-technologies/network-technology/architectures.page</u>

IDENTITY SERVICES ENGINE

Adaptive Security Appliances

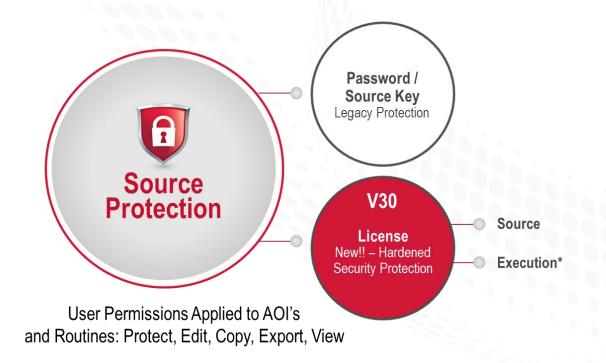
User access control and authorization

FactoryTalk® Security software

- Provides a centralized authority to verify identity of each user
 - Active Directory integration
 - Disconnected environment support
- Grants or deny user's requests to perform a particular set of actions on resources within the system

• Authorize configuration access to controllers

From v28:

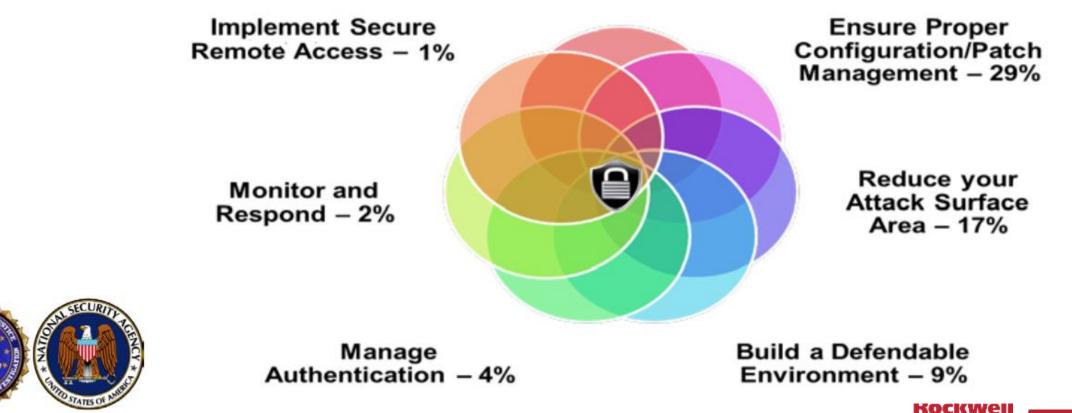

- Temporary privilege escalation
- Guest user access
- Reusable permission sets (routines, AOIs, and tags)
- Secondary security authority

License-based source protection

Content protection features

A solution for customers to help protect the <u>design</u> & <u>execution</u> of Logix content

- **Source Protection**: Control of who can view and edit the source code of objects.
- **Execution Protection**: Control of which controllers these objects can be executed in. Prevent the duplication of code in an unauthorized machine.

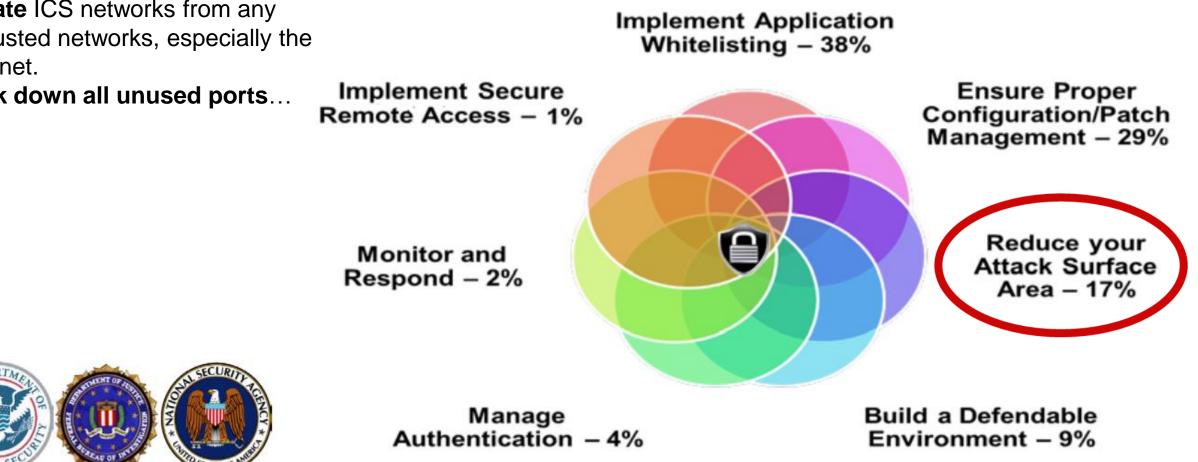


*Supported by ControlLogix[®] 5580, CompactLogix[™] 5480, CompactLogix[™] 5380 controllers

Percentage of ICS-CERT Incidents Potentially Mitigated by Each Strategy

Seven Strategies to Defend ICSs

Implement Application Whitelisting – 38%



Automation

Reduce your attack surface area

Isolate ICS networks from any untrusted networks, especially the Internet.

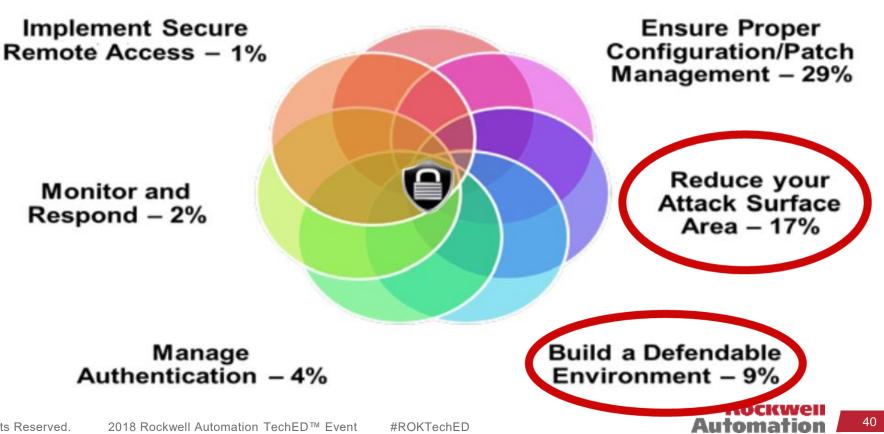
Lock down all unused ports...

Seven Strategies to Defend ICSs

Reduce your attack surface area

Isolate ICS networks from any untrusted networks, especially the Internet.

Lock down all unused ports...


Build a defendable Environment

Limit damage from network perimeter breaches. Segment networks into logical enclaves and restrict host-to-host communications paths...

Implement Application

Whitelisting – 38%

Reduce your attack surface area

Isolate ICS networks from any untrusted networks, especially the Internet.

Lock down all unused ports...

Build a defendable Environment

Limit damage from network perimeter breaches. Segment networks into logical enclaves and restrict host-to-host communications paths...

Monitor and Respond – 2%

Industrial Ethernet Switch Type Selection

Managed Infrastructure

	Advantages	Disadvantages
Managed Switches	 Loop prevention and resiliency Security services Management services (Multicast, DHCP per port and DLR) Diagnostic information Segmentation services (VLANs) Prioritization services (QoS) 	 More expensive Requires some level of support and configuration to start up
Unmanaged Switches	InexpensiveSimple to set up	 No loop prevention or resiliency No security services No diagnostic information No segmentation or prioritization services Difficult to troubleshoot, no management services
ODVA Embedded Switch Technology	 Cable simplification with reduced cost Ring loop prevention and resiliency Prioritization services (QoS) Time Sync Services (IEEE 1588 PTP Transparent Clock) Diagnostic information 	 Limited management capabilities May require minimal configuration

Managed Infrastructure Selection

Managed Infrastructure

Managed Switches

- Access switching or distribution routing
- Diagnostic information
- Network Address Translation (NAT)
- Segmentation / VLAN capabilities
- Prioritization services (QoS)
- Network resiliency

Security Appliances

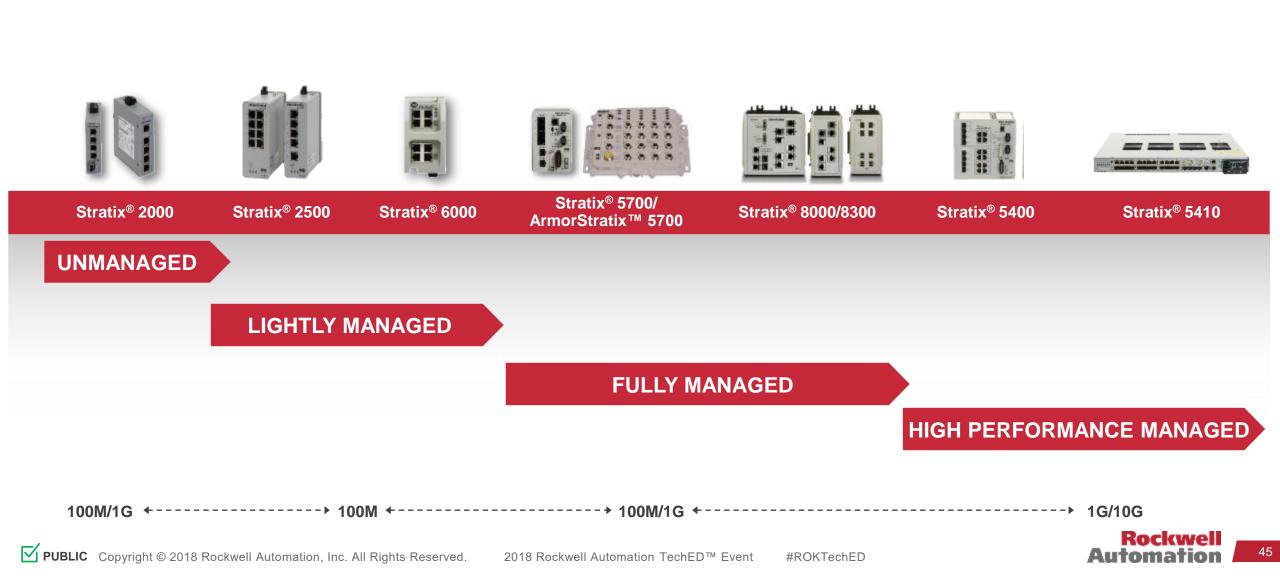
- Secure real-time control communication
- Routing and firewall capabilities
- Intrusion protection
- Access control lists

Manageability by OT and IT tools

- Topologies Switch-level and device-level
- Switching network services
- Routing connected, static, dynamic
- Wireless Access Points Autonomous and Unified Architectures
- Security Appliances Industrial firewalls with inspection profiles for EtherNet/IP deep packet inspection (DPI)

The Stratix[®] portfolio

Integrating industrial and enterprise environments


Products that offer ...

- Layer 2 and Layer 2 switching for simple to complex network applications
- Advanced security services
- Plant-floor and Enterprise integration

Technology that offers ...

- Advanced switching, routing & security features
- Common tools for Controls & IT
- Improved Maintainability

Network Switch Product Overview

Network security appliance

Stratix[®] 5950 security appliance

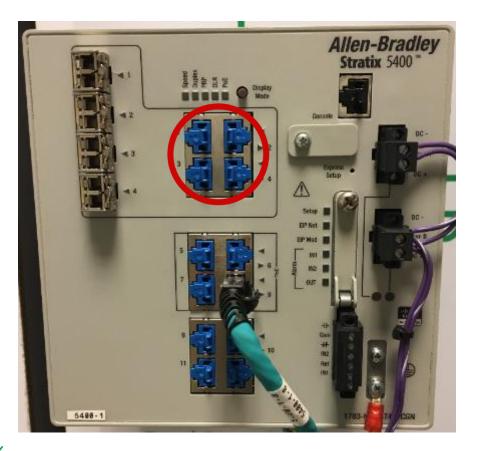
Strategic collaboration between Cisco and Rockwell Automation

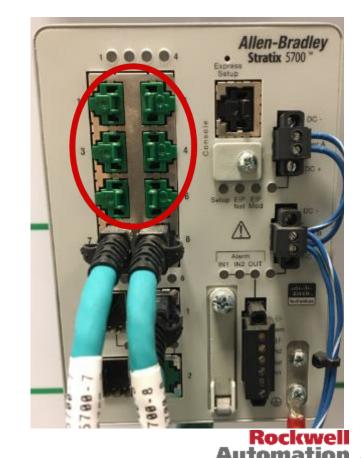
- Based on recognized and proven technologies
 - Adaptive Security Appliance for Firewall and VPN
 - SourceFire FirePOWER technology for inspection and detection
 - Enhanced with OT context of protocols, behaviors, and features
- Key Features:
 - Deep packet inspection for ICS protocols
 - Threat & Application Update Service

- DIN rail mount
- Connectivity Options:
 - (4) 1Gig Copper
 - (2) 1Gig Copper and (2) SFP
- Industrially-hardened

Unused ports

- Why do we need to enable a maintenance port? Cant we connect?
 - It's a common security practice to shut down all unused ports
 - However, with the proper credentials we can use our CIP[™] integration to activate or deactivate the port easily from the HMI




FactoryTalk View SE Client Login				
Type your user name and password:				
User name:		ОК		
Password:		Cancel		

Unused ports

- Additionally, ports typically have a port lock in place
 - Can only be removed using special tools

Unused ports and cables

You can even lock cables and prevent them from being removed!

